Copied to
clipboard

G = C3×C2.C42order 96 = 25·3

Direct product of C3 and C2.C42

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C3×C2.C42, C6.6C42, (C2×C4)⋊2C12, (C2×C12)⋊4C4, (C2×C6).7Q8, C2.1(C4×C12), (C2×C6).45D4, C6.10(C4⋊C4), (C22×C4).3C6, C22.7(C3×D4), C22.2(C3×Q8), C23.15(C2×C6), (C22×C12).2C2, C22.7(C2×C12), C6.19(C22⋊C4), (C22×C6).48C22, C2.1(C3×C4⋊C4), (C2×C6).36(C2×C4), C2.1(C3×C22⋊C4), SmallGroup(96,45)

Series: Derived Chief Lower central Upper central

C1C2 — C3×C2.C42
C1C2C22C23C22×C6C22×C12 — C3×C2.C42
C1C2 — C3×C2.C42
C1C22×C6 — C3×C2.C42

Generators and relations for C3×C2.C42
 G = < a,b,c,d | a3=b2=c4=d4=1, ab=ba, ac=ca, ad=da, dcd-1=bc=cb, bd=db >

Subgroups: 100 in 76 conjugacy classes, 52 normal (10 characteristic)
C1, C2, C2, C3, C4, C22, C22, C6, C6, C2×C4, C2×C4, C23, C12, C2×C6, C2×C6, C22×C4, C2×C12, C2×C12, C22×C6, C2.C42, C22×C12, C3×C2.C42
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, Q8, C12, C2×C6, C42, C22⋊C4, C4⋊C4, C2×C12, C3×D4, C3×Q8, C2.C42, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C3×C2.C42

Smallest permutation representation of C3×C2.C42
Regular action on 96 points
Generators in S96
(1 15 11)(2 16 12)(3 13 9)(4 14 10)(5 69 65)(6 70 66)(7 71 67)(8 72 68)(17 25 21)(18 26 22)(19 27 23)(20 28 24)(29 37 33)(30 38 34)(31 39 35)(32 40 36)(41 52 45)(42 49 46)(43 50 47)(44 51 48)(53 61 57)(54 62 58)(55 63 59)(56 64 60)(73 81 77)(74 82 78)(75 83 79)(76 84 80)(85 93 89)(86 94 90)(87 95 91)(88 96 92)
(1 55)(2 56)(3 53)(4 54)(5 25)(6 26)(7 27)(8 28)(9 57)(10 58)(11 59)(12 60)(13 61)(14 62)(15 63)(16 64)(17 65)(18 66)(19 67)(20 68)(21 69)(22 70)(23 71)(24 72)(29 73)(30 74)(31 75)(32 76)(33 77)(34 78)(35 79)(36 80)(37 81)(38 82)(39 83)(40 84)(41 85)(42 86)(43 87)(44 88)(45 89)(46 90)(47 91)(48 92)(49 94)(50 95)(51 96)(52 93)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)
(1 87 75 19)(2 44 76 68)(3 85 73 17)(4 42 74 66)(5 61 52 37)(6 14 49 82)(7 63 50 39)(8 16 51 84)(9 89 77 21)(10 46 78 70)(11 91 79 23)(12 48 80 72)(13 93 81 25)(15 95 83 27)(18 54 86 30)(20 56 88 32)(22 58 90 34)(24 60 92 36)(26 62 94 38)(28 64 96 40)(29 65 53 41)(31 67 55 43)(33 69 57 45)(35 71 59 47)

G:=sub<Sym(96)| (1,15,11)(2,16,12)(3,13,9)(4,14,10)(5,69,65)(6,70,66)(7,71,67)(8,72,68)(17,25,21)(18,26,22)(19,27,23)(20,28,24)(29,37,33)(30,38,34)(31,39,35)(32,40,36)(41,52,45)(42,49,46)(43,50,47)(44,51,48)(53,61,57)(54,62,58)(55,63,59)(56,64,60)(73,81,77)(74,82,78)(75,83,79)(76,84,80)(85,93,89)(86,94,90)(87,95,91)(88,96,92), (1,55)(2,56)(3,53)(4,54)(5,25)(6,26)(7,27)(8,28)(9,57)(10,58)(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(29,73)(30,74)(31,75)(32,76)(33,77)(34,78)(35,79)(36,80)(37,81)(38,82)(39,83)(40,84)(41,85)(42,86)(43,87)(44,88)(45,89)(46,90)(47,91)(48,92)(49,94)(50,95)(51,96)(52,93), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96), (1,87,75,19)(2,44,76,68)(3,85,73,17)(4,42,74,66)(5,61,52,37)(6,14,49,82)(7,63,50,39)(8,16,51,84)(9,89,77,21)(10,46,78,70)(11,91,79,23)(12,48,80,72)(13,93,81,25)(15,95,83,27)(18,54,86,30)(20,56,88,32)(22,58,90,34)(24,60,92,36)(26,62,94,38)(28,64,96,40)(29,65,53,41)(31,67,55,43)(33,69,57,45)(35,71,59,47)>;

G:=Group( (1,15,11)(2,16,12)(3,13,9)(4,14,10)(5,69,65)(6,70,66)(7,71,67)(8,72,68)(17,25,21)(18,26,22)(19,27,23)(20,28,24)(29,37,33)(30,38,34)(31,39,35)(32,40,36)(41,52,45)(42,49,46)(43,50,47)(44,51,48)(53,61,57)(54,62,58)(55,63,59)(56,64,60)(73,81,77)(74,82,78)(75,83,79)(76,84,80)(85,93,89)(86,94,90)(87,95,91)(88,96,92), (1,55)(2,56)(3,53)(4,54)(5,25)(6,26)(7,27)(8,28)(9,57)(10,58)(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(29,73)(30,74)(31,75)(32,76)(33,77)(34,78)(35,79)(36,80)(37,81)(38,82)(39,83)(40,84)(41,85)(42,86)(43,87)(44,88)(45,89)(46,90)(47,91)(48,92)(49,94)(50,95)(51,96)(52,93), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96), (1,87,75,19)(2,44,76,68)(3,85,73,17)(4,42,74,66)(5,61,52,37)(6,14,49,82)(7,63,50,39)(8,16,51,84)(9,89,77,21)(10,46,78,70)(11,91,79,23)(12,48,80,72)(13,93,81,25)(15,95,83,27)(18,54,86,30)(20,56,88,32)(22,58,90,34)(24,60,92,36)(26,62,94,38)(28,64,96,40)(29,65,53,41)(31,67,55,43)(33,69,57,45)(35,71,59,47) );

G=PermutationGroup([[(1,15,11),(2,16,12),(3,13,9),(4,14,10),(5,69,65),(6,70,66),(7,71,67),(8,72,68),(17,25,21),(18,26,22),(19,27,23),(20,28,24),(29,37,33),(30,38,34),(31,39,35),(32,40,36),(41,52,45),(42,49,46),(43,50,47),(44,51,48),(53,61,57),(54,62,58),(55,63,59),(56,64,60),(73,81,77),(74,82,78),(75,83,79),(76,84,80),(85,93,89),(86,94,90),(87,95,91),(88,96,92)], [(1,55),(2,56),(3,53),(4,54),(5,25),(6,26),(7,27),(8,28),(9,57),(10,58),(11,59),(12,60),(13,61),(14,62),(15,63),(16,64),(17,65),(18,66),(19,67),(20,68),(21,69),(22,70),(23,71),(24,72),(29,73),(30,74),(31,75),(32,76),(33,77),(34,78),(35,79),(36,80),(37,81),(38,82),(39,83),(40,84),(41,85),(42,86),(43,87),(44,88),(45,89),(46,90),(47,91),(48,92),(49,94),(50,95),(51,96),(52,93)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96)], [(1,87,75,19),(2,44,76,68),(3,85,73,17),(4,42,74,66),(5,61,52,37),(6,14,49,82),(7,63,50,39),(8,16,51,84),(9,89,77,21),(10,46,78,70),(11,91,79,23),(12,48,80,72),(13,93,81,25),(15,95,83,27),(18,54,86,30),(20,56,88,32),(22,58,90,34),(24,60,92,36),(26,62,94,38),(28,64,96,40),(29,65,53,41),(31,67,55,43),(33,69,57,45),(35,71,59,47)]])

C3×C2.C42 is a maximal subgroup of
C6.C4≀C2  C4⋊Dic3⋊C4  (C2×C12)⋊Q8  C6.(C4×Q8)  Dic3.5C42  Dic3⋊C42  C3⋊(C428C4)  C3⋊(C425C4)  C6.(C4×D4)  C2.(C4×D12)  C2.(C4×Dic6)  Dic3⋊C4⋊C4  (C2×C4)⋊Dic6  C6.(C4⋊Q8)  (C2×Dic3).9D4  (C2×C4).17D12  (C2×C4).Dic6  (C22×C4).85D6  (C22×C4).30D6  C22.58(S3×D4)  (C2×C4)⋊9D12  D6⋊C42  D6⋊(C4⋊C4)  D6⋊C4⋊C4  D6⋊C45C4  D6⋊C43C4  (C2×C12)⋊5D4  C6.C22≀C2  (C22×S3)⋊Q8  (C2×C4).21D12  C6.(C4⋊D4)  (C22×C4).37D6  (C2×C12).33D4  C12×C22⋊C4  C12×C4⋊C4  C2.(C42⋊C9)

60 conjugacy classes

class 1 2A···2G3A3B4A···4L6A···6N12A···12X
order12···2334···46···612···12
size11···1112···21···12···2

60 irreducible representations

dim1111112222
type+++-
imageC1C2C3C4C6C12D4Q8C3×D4C3×Q8
kernelC3×C2.C42C22×C12C2.C42C2×C12C22×C4C2×C4C2×C6C2×C6C22C22
# reps132126243162

Matrix representation of C3×C2.C42 in GL5(𝔽13)

30000
01000
00100
00010
00001
,
10000
01000
00100
000120
000012
,
120000
05000
00500
00065
00067
,
120000
05000
00100
000111
000012

G:=sub<GL(5,GF(13))| [3,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,12,0,0,0,0,0,12],[12,0,0,0,0,0,5,0,0,0,0,0,5,0,0,0,0,0,6,6,0,0,0,5,7],[12,0,0,0,0,0,5,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,11,12] >;

C3×C2.C42 in GAP, Magma, Sage, TeX

C_3\times C_2.C_4^2
% in TeX

G:=Group("C3xC2.C4^2");
// GroupNames label

G:=SmallGroup(96,45);
// by ID

G=gap.SmallGroup(96,45);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-2,-2,144,169,295]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^2=c^4=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,d*c*d^-1=b*c=c*b,b*d=d*b>;
// generators/relations

׿
×
𝔽